23 research outputs found

    Using machine-learning approach to distinguish patients with methamphetamine dependence from healthy subjects in a virtual reality environment

    Get PDF
    Background: The aim of this study was to evaluate whether machine learning (ML) can be used to distinguish patients with methamphetamine dependence from healthy controls by using their surface electroencephalography (EEG) and galvanic skin response (GSR) in a drug-simulated virtual reality (VR) environment. Methods: A total of 333 participants with methamphetamine (METH) dependence and 332 healthy control subjects were recruited between January 2018 and January 2019. EEG (five electrodes) and GSR signals were collected under four VR environments: one neutral scenario and three METH-simulated scenarios. Three ML classification techniques were evaluated: random forest (RF), support vector machine (SVM), and logistic regression (LR). Results: The MANOVA showed no interaction effects among the two subject groups and the 4 VR scenarios. Taking patient groups as the main effect, the METH user group had significantly lower GSR, lower EEG power in delta (p < .001), and alpha bands (p < .001) than healthy subjects. The EEG power of beta band (p < .001) and gamma band (p < .001) was significantly higher in METH group than the control group. Taking the VR scenarios (Neutral versus METH‐VR) as the main effects, the GSR, EEG power in delta, theta, and alpha bands in neutral scenario were significantly higher than in the METH‐VR scenario (p < .001). The LR algorithm showed the highest specificity and sensitivity in distinguishing methamphetamine‐dependent patients from healthy controls. Conclusion: The study shows the potential of using machine learning to distinguish methamphetamine-dependent patients from healthy subjects by using EEG and GSR data. The LR algorithm shows the best performance comparing with SVM and RF algorithm

    Assessing the performance of variational methods for mixed logistic regression models

    No full text

    All Roads Lead to Rome—New Search Methods for The Optimal Triangulation Problem ✩

    Get PDF
    To perform efficient inference in Bayesian networks by means of a Junction Tree method, the network graph needs to be triangulated. The quality of this triangulation largely determines the efficiency of the subsequent inference, but the triangulation problem is unfortunately NP-hard. It is common for existing methods to use the treewidth criterion for optimality of a triangulation. However, this criterion may lead to a somewhat harder inference problem than the total table size criterion. We therefore investigate new methods for depth-first search and best-first search for finding optimal total table size triangulations. The search methods are made faster by efficient dynamic maintenance of the cliques of a graph. This problem was investigated by Stix, and in this paper we derive a new simple method based on the Bron-Kerbosch algorithm that compares favourably to Stix ’ approach. The new approach is generic in the sense that it can be used with other algorithms than just Bron-Kerbosch. The algorithms for finding optimal triangulations are mainly supposed to be off-line methods, but they may form the basis for efficient any-time heuristics. Furthermore, the methods make it possible to evaluate the quality of heuristics precisely and allow us to discover parts of the search space that are most important to direct randomized sampling to

    Integrating the human factor in FMECA-based risk evaluation through Bayesian networks

    Full text link
    Carpitella, S.; Izquierdo Sebastián, J.; Plajner, M.; Vomlel, J. (2020). Integrating the human factor in FMECA-based risk evaluation through Bayesian networks. 24-29. http://hdl.handle.net/10251/177488S242

    The Characteristic Imset Polytope of Bayesian Networks with Ordered Nodes

    No full text

    Triangulation Heuristics for BN2O Networks

    No full text
    corecore